Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Toxicol ; 4: 986318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310692

RESUMO

The in vitro comet assay is a widely applied method for investigating genotoxicity of chemicals including engineered nanomaterials (NMs). A big challenge in hazard assessment of NMs is possible interference between the NMs and reagents or read-out of the test assay, leading to a risk of biased results. Here, we describe both the standard alkaline version of the in vitro comet assay with 12 mini-gels per slide for detection of DNA strand breaks and the enzyme-modified version that allows detection of oxidized DNA bases by applying lesion-specific endonucleases (e.g., formamidopyrimidine DNA glycosylase or endonuclease III). We highlight critical points that need to be taken into consideration when assessing the genotoxicity of NMs, as well as basic methodological considerations, such as the importance of carrying out physicochemical characterization of the NMs and investigating uptake and cytotoxicity. Also, experimental design-including treatment conditions, cell number, cell culture, format and volume of medium on the plate-is crucial and can have an impact on the results, especially when testing NMs. Toxicity of NMs depends upon physicochemical properties that change depending on the environment. To facilitate testing of numerous NMs with distinct modifications, the higher throughput miniaturized version of the comet assay is essential.

2.
Int J Pharm ; 523(1): 418-426, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28286081

RESUMO

In the last years, the development of nanomaterials has significantly increased due to the immense variety of potential applications in technological sectors, such as medicine, pharmacy and food safety. Focusing on the nanodevices for oral drug delivery, poly(anhydride) nanoparticles have received extensive attention due to their unique properties, such as their capability to develop intense adhesive interactions within the gut mucosa, their modifiable surface and their biodegradable and easy-to-produce profile. However, current knowledge of the possible adverse health effects as well as, toxicological information, is still exceedingly limited. Thus, we investigated the capacity of two poly(anhydride) nanoparticles, Gantrez® AN 119-NP (GN-NP) and Gantrez® AN 119 covered with mannosamine (GN-MA-NP), and their main bulk material (Gantrez® AN 119-Polymer), to induce DNA damage and thymidine kinase (TK+/-) mutations in L5178Y TK+/- mouse lymphoma cells after 24h of exposure. The results showed that GN-NP, GN-MA-NP and their polymer did not induce DNA strand breaks or oxidative damage at concentrations ranging from 7.4 to 600µg/mL. Besides, the mutagenic potential of these nanoparticles and their polymer revealed no significant or biologically relevant gene mutation induction at concentrations up to 600µg/mL under our experimental settings. Considering the non-genotoxic effects of GN-NP and GN-MA-NP, as well as their exceptional properties, these nanoparticles are promising nanocarriers for oral medical administrations.


Assuntos
Portadores de Fármacos/toxicidade , Maleatos/toxicidade , Nanopartículas/toxicidade , Polivinil/toxicidade , Administração Oral , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Camundongos , Testes de Mutagenicidade , Mutação , Timidina Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...